J

Series MC lubricators

Ports G1/4, G3/8 and G1/2 Modular with metal bowl and bayonet-type mounting

Series MC lubricators are available with ports G1/4, G3/8 and G1/2. The bowls of these lubricators are made of metal and are equipped with a transparent viewer. The oil flow can be monitored through the small transparent cap and regulated by means of the proper adjusting screw.

GENERAL DATA Construction modular compact Materials zama, NBR, technopolymer **Ports** G1/4 G3/8 G1/2 Oil capacity cm3 37 170 170 Weight kg 0,338 0,712 0,674 Mounting vertical in-line or wall-mounting -5°C ÷ 50°C at 10 bar (with the dew point of the fluid lower than 2°C at the min. working temperature) Operating temperature Oil refilling without pressure (G1/4) also during use (G3/8 - G1/2) Oil for lubrication from 3°E ÷ 10°E(ask our engineers for types) Finishing enamelled Operating pressure 0 ÷ 16 bar Nominal flow see graphs G1/4 - G3/8 - G1/2 Min. air consumption for lubr (NI/min) 8 - 8 - 8,5 15 - 17,5 - 15,5 at 1 bar at 6 bar

CAMOZZI

CODING EXAMPLE

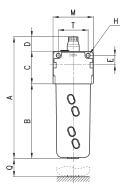
02 00 MC 2

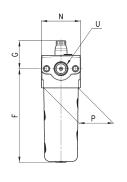
SERIES 2

SIZE 1 = G1/4 2 = G3/8 - G1/2

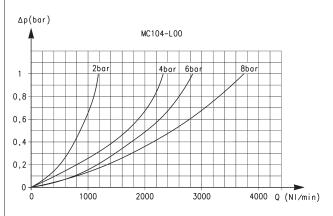
02

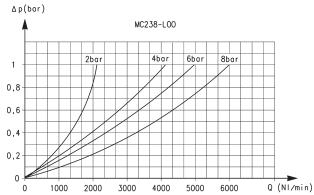
PORTS 04 = G1/4 38 = G3/8 02 = G1/2


L = LUBRICATOR


DESIGN TYPE 00 = atomized oil 00

Lubricators Series MC



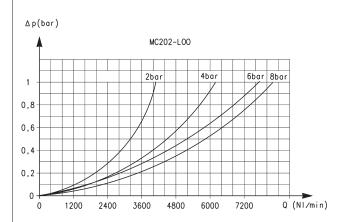


DIMENSIONS														
Mod.	Α	В	С	D	E	F	G	Н	M	N	Р	Q	Т	U
MC104-L00	148	83	40	25	11	107	41	4,5	45	45	37	84	35	G1/4
MC238-L00	187	115	50	22	14	144	43	5,5	62	60	53	117	46	G3/8
MC202-L00	187	115	50	22	14	144	43	5,5	62	60	53	117	46	G1/2

FLOW DIAGRAMS

Flow diagram for model: MC104-L00

 ΔP = Pressure drop


Q = Flow

Flow diagram for model: MC238-L00

 ΔP = Pressure drop

Q = Flow

FLOW DIAGRAM

Flow diagram for model: MC202-L00

 ΔP = Pressure drop

Q = Flow